Metric dimension of generalized wheels

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Möbius Ladder and Its Metric Dimension

In this paper we introduce generalized Möbius ladder Mm,n and give its metric dimension. Moreover, it is observed that, depending on even and odd values of m and n, it has two subfamilies with constant metric dimensions.

متن کامل

On the Metric Dimension of Generalized Petersen Graphs

A family of connected graphs G is said to be a family with constant metric dimension if its metric dimension is finite and does not depend upon the choice of G in G. In this paper, we study the metric dimension of the generalized Petersen graphs P (n, m) for n = 2m + 1 and m ≥ 1 and give partial answer of the question raised in [9]: Is P (n, m) for n ≥ 7 and 3 ≤ m ≤ bn−1 2 c, a family of graphs...

متن کامل

The metric dimension and girth of graphs

A set $Wsubseteq V(G)$ is called a resolving set for $G$, if for each two distinct vertices $u,vin V(G)$ there exists $win W$ such that $d(u,w)neq d(v,w)$, where $d(x,y)$ is the distance between the vertices $x$ and $y$. The minimum cardinality of a resolving set for $G$ is called the metric dimension of $G$, and denoted by $dim(G)$. In this paper, it is proved that in a connected graph $...

متن کامل

On the partition dimension and connected partition dimension of wheels

Let G be a connected graph. For a vertex v ∈ V (G) and an ordered k-partition Π = {S1, S2, ..., Sk} of V (G), the representation of v with respect to Π is the k-vector r(v|Π) = (d(v, S1), d(v, S2), ..., d(v, Sk)). The k-partition Π is said to be resolving if the k-vectors r(v|Π), v ∈ V (G), are distinct. The minimum k for which there is a resolving k-partition of V (G) is called the partition d...

متن کامل

GENERALIZED GORENSTEIN DIMENSION OVER GROUP RINGS

Let $(R, m)$ be a commutative noetherian local ring and let $Gamma$ be a finite group. It is proved that if $R$ admits a dualizing module, then the group ring $Rga$ has a dualizing bimodule as well. Moreover, it is shown that a finitely generated $Rga$-module $M$ has generalized Gorenstein dimension zero if and only if it has generalized Gorenstein dimension zero as an $R$-module.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Arab Journal of Mathematical Sciences

سال: 2019

ISSN: 1319-5166

DOI: 10.1016/j.ajmsc.2019.04.002